1,604 research outputs found

    Optimizing Thermoelectric Efficiency in La_(3−x)Te_4 via Yb Substitution

    Get PDF
    A low temperature, solid state synthesis technique has enabled the production of homogeneous samples of La_(3−x−y)Yb_yTe_4. This allows the substitution of divalent Yb to be utilized to optimize the thermoelectric performance in lanthanum telluride. The addition of Yb^(2+) changes the electrical transport properties in a manner that can be well understood using valence counting rules and a corresponding change in the Fermi energy. The substitution of Yb^(2+) for La^(3+) results in a threefold finer control over the carrier density n, thus allowing the optimum n ~ 0.3 × 10^(21) cm^(−3) to be both predicted and prepared. The net result is an improvement in thermoelectric efficiency, with zT reaching ~ 1.2 at 1273 K

    Zintl Chemistry for Designing High Efficiency Thermoelectric Materials

    Get PDF
    Zintl phases and related compounds are promising thermoelectric materials; for instance, high zT has been found in Yb_(14)MnSb_(11), clathrates, and the filled skutterudites. The rich solid-state chemistry of Zintl phases enables numerous possibilities for chemical substitutions and structural modifications that allow the fundamental transport parameters (carrier concentration, mobility, effective mass, and lattice thermal conductivity) to be modified for improved thermoelectric performance. For example, free carrier concentration is determined by the valence imbalance using Zintl chemistry, thereby enabling the rational optimization of zT. The low thermal conductivity values obtained in Zintl thermoelectrics arise from a diverse range of sources, including point defect scattering and the low velocity of optical phonon modes. Despite their complex structures and chemistry, the transport properties of many modern thermoelectrics can be understood using traditional models for heavily doped semiconductors

    Transport properties of the layered Zintl compound SrZnSb_2

    Get PDF
    Transport properties of the layered Zintl compound SrZnSb_2 have been characterized from room temperature to 725 K on polycrystalline samples. SrZnSb_2 samples were found to be p-type with a Hall carrier concentration of 5×10^(20) cm^(−3) at room temperature, and a small Seebeck coefficient and electrical resistivity are observed. A single band model predicts that, even with optimal doping, significant thermoelectric performance will not be achieved in SrZnSb_2. A relatively low lattice thermal conductivity is observed, κ_L~1.2 W m^(−1) K^(−1), at room temperature. The thermal transport of SrZnSb_2 is compared to that of the layered Zintl compounds AZn2Sb_2 (A=Ca,Yb,Sr,Eu), which have smaller unit cells and larger lattice thermal conductivity, κ_L~2 W m^(−1) K^(−1), at 300K. Ultrasonic measurements, in combination with kinetic theory and the estimated κ_L values, suggest that the lower κ_L of SrZnSb_2 is primarily the result of a reduction in the volumetric specific heat of the acoustic phonons due to the increased number of atoms per unit cell. Therefore, this work recommends that unit cell size should be considered when selecting Zintl compounds for potential thermoelectric application

    Thermoelectric properties of p-type LiZnSb: Assessment of ab initio calculations

    Get PDF
    In response to theoretical calculations on the thermoelectric performance of LiZnSb, we report the pertinent transport properties between room temperature and 523 K. Nominal LiZnSb samples are found to be p-type, with a carrier concentration in the range (4–7)×10^(20) cm^(−3). The thermoelectric figure of merit (zT) is found to be 0.02–0.08 at 523 K. Analysis of material transport parameters and previously reported ab initio calculations demonstrates that even with optimal doping, p-type LiZnSb is unlikely to achieve zT>0.2 at 523 K. The accuracy of the high zT estimate (zT>2) for n-type compositions from ab initio calculations is discussed within the current synthetic limits

    Model-free reconstruction of magnetic correlations in frustrated magnets

    Full text link
    Frustrated magnetic systems exhibit extraordinary physical properties but quantification of their magnetic correlations poses a serious challenge to experiment and theory. Current insight into frustrated magnetic correlations relies on modelling techniques such as reverse Monte Carlo methods, which require knowledge about the exact ordered atomic structure. Here we present a method for direct reconstruction of magnetic correlations in frustrated magnets by three-dimensional difference pair distribution function analysis of neutron total scattering data. The methodology is applied to the disordered frustrated magnet bixbyite, (Mn1-xFex)2O3, which reveals nearest-neighbor antiferromagnetic correlations for the metal sites up to a range of approximately 15 {\AA}. Importantly, this technique allows for magnetic correlations to be determined directly from the experimental data without any assumption about the atomic structure

    Valence band study of thermoelectric Zintl-phase SrZn_2Sb_2 and YbZn_2Sb_2: X-ray photoelectron spectroscopy and density functional theory

    Get PDF
    The electronic structure of SrZn_2Sb_2 and YbZn_2Sb_2 is investigated using density functional theory and high-resolution x-ray photoemission spectroscopy. Both traditional Perdew-Burke-Ernzerhof and state-of-the-art hybrid Heyd-Scuseria-Ernzerhof functionals have been employed to highlight the importance of proper treatment of exchange-dependent Zn  3d states, Yb 4f states, and band gaps. The role of spin-orbit corrections in light of first-principles transport calculations are discussed and previous claims of Yb^(3+) valence are investigated with the assistance of photoelectron as well as scanning and transmission electron microscopy
    • …
    corecore